Phương trình H2S + I2 → HI + S
Xem thông tin chi tiết về điều kiện, quá trình, hiện tượng sau phản ứng, các chất tham phản ứng, các chất sản phẩm sau phản ứng của phương trình H2S + I2 → HI + S
Tìm kiếm phương trình hóa học
Hãy nhập vào chất tham gia hoặc/và chất sản phẩm để bắt đầu tìm kiếm
Giới thiệu
Cách viết phương trình đã cân bằng
H2S
Tên gọi: hidro sulfua
Nguyên tử khối: 34.0809
Nhiệt độ sôi: -60°C
Nhiệt độ nóng chảy: -82°C
+
I2
Tên gọi: Iot
Nguyên tử khối: 253.808940 ± 0.000060
Nhiệt độ sôi: 184°C
Nhiệt độ nóng chảy: 113°C
→
2
HI
Tên gọi: axit iodic
Nguyên tử khối: 127.91241 ± 0.00010
+
S
Tên gọi: sulfua
Nguyên tử khối: 32.0650
Nhiệt độ sôi: 444°C
Nhiệt độ nóng chảy: 115°C
Tên gọi: hidro sulfua
Nguyên tử khối: 34.0809
Nhiệt độ sôi: -60°C
Nhiệt độ nóng chảy: -82°C
Tên gọi: Iot
Nguyên tử khối: 253.808940 ± 0.000060
Nhiệt độ sôi: 184°C
Nhiệt độ nóng chảy: 113°C
Tên gọi: axit iodic
Nguyên tử khối: 127.91241 ± 0.00010
Tên gọi: sulfua
Nguyên tử khối: 32.0650
Nhiệt độ sôi: 444°C
Nhiệt độ nóng chảy: 115°C
Thông tin chi tiết về phương trình
Điều kiện phản ứng khi cho tác dụng H2S + I2
- Chất xúc tác: không có
- Nhiệt độ: thường
- Áp suất: thường
- Điều kiện khác: không có
Quá trình phản ứng H2S + I2
Quá trình: cho khí H2S tác dụng với iot
Lưu ý: không có
Hiện tượng xảy ra sau phản ứng H2S + I2
Hiện tượng: Xuất hiện kết tủa vàng Lưu huỳnh (S).
Thông tin chi tiết các chất tham gia phản ứng
Thông tin về H2S (hidro sulfua)
- Nguyên tử khối: 34.0809
- Màu sắc: không màu
- Trạng thái: khí
Hydro sunfua được sử dụng chủ yếu để sản xuất axit sunfuric và lưu huỳnh. Nó cũng được sử dụng để tạo ra nhiều loại sulfua vô cơ được sử dụng để tạo ra thuốc trừ sâu, da, thuốc nhuộm và dược phẩm. Hydrogen sulfide được sử dụng để sản xuất nước nặng cho các nhà máy điện hạt nhân (cụ thể là các lò phả...
Thông tin về I2 (Iot)
- Nguyên tử khối: 253.808940 ± 0.000060
- Màu sắc: Ánh kim xám bóng khi ở thể rắn, tím khi ở thể khí
- Trạng thái: Chất rắn /Thể khí
Iốt là nguyên tố vi lượng cần thiết cho dinh dưỡng của loài người. Tại những vùng đất xa biển hoặc thiếu thức ăn có nguồn gốc từ đại dương; tình trạng thiếu iốt có thể xảy ra và gây nên những tác hại cho sức khỏe, như sinh bệnh bướu cổ hay thiểu năng trí tuệ. Đây là tình trạng xảy ra tại nhiều nơi t...
Thông tin chi tiết các chất sản phẩm sau phản ứng
Thông tin về HI (axit iodic)
- Nguyên tử khối: 127.91241 ± 0.00010
- Màu sắc: không màu
- Trạng thái: khí
HI thường được sử dụng như một chất khử từ rất sớm trong lịch sử hóa học hữu cơ. Các nhà hóa học trong thế kỷ 19 đã cố gắng điều chế cyclohexane bằng cách khử HI của benzen ở nhiệt độ cao, nhưng thay vào đó cô lập sản phẩm được sắp xếp lại, methylcyclopentane (xem bài viết về cyclohexane). Theo báo ...
Thông tin về S (sulfua)
- Nguyên tử khối: 32.0650
- Màu sắc: vàng chanh
- Trạng thái: chất rắn
Lưu huỳnh có nhiều ứng dụng công nghiệp. Thông qua dẫn xuất chính của nó là axít sulfuric (H2SO4), lưu huỳnh được đánh giá là một trong các nguyên tố quan trọng nhất được sử dụng như là nguyên liệu công nghiệp. Nó là quan trọng bậc nhất đối với mọi lĩnh vực của nền kinh tế thế giới. Sản xuất axít...
Tổng số đánh giá: 0
Xếp hạng: 5 / 5 sao
Các phương trình điều chế H2S
3
CaS
Tên gọi: Canxi sunfua
Nguyên tử khối: 72.1430
+
2
H3PO4
Tên gọi: axit photphoric
Nguyên tử khối: 97.9952
→
Ca3(PO4)2
Tên gọi: canxi photphat
Nguyên tử khối: 310.1767
Nhiệt độ nóng chảy: 450°C
+
3
H2S
Tên gọi: hidro sulfua
Nguyên tử khối: 34.0809
Nhiệt độ sôi: -60°C
Nhiệt độ nóng chảy: -82°C
Tên gọi: Canxi sunfua
Nguyên tử khối: 72.1430
Tên gọi: axit photphoric
Nguyên tử khối: 97.9952
Tên gọi: canxi photphat
Nguyên tử khối: 310.1767
Nhiệt độ nóng chảy: 450°C
Tên gọi: hidro sulfua
Nguyên tử khối: 34.0809
Nhiệt độ sôi: -60°C
Nhiệt độ nóng chảy: -82°C
Chất xúc tác
không có
Nhiệt độ
thường
Áp suất
thường
Điều kiện khác
không có
FeS
Tên gọi: sắt (II) sulfua
Nguyên tử khối: 87.9100
Nhiệt độ nóng chảy: 1194°C
+
2
HCl
Tên gọi: axit clohidric
Nguyên tử khối: 36.4609
Nhiệt độ sôi: 110°C
→
FeCl2
Tên gọi: sắt (II) clorua
Nguyên tử khối: 126.7510
Nhiệt độ sôi: 1023°C
Nhiệt độ nóng chảy: 667°C
+
H2S
Tên gọi: hidro sulfua
Nguyên tử khối: 34.0809
Nhiệt độ sôi: -60°C
Nhiệt độ nóng chảy: -82°C
Tên gọi: sắt (II) sulfua
Nguyên tử khối: 87.9100
Nhiệt độ nóng chảy: 1194°C
Tên gọi: axit clohidric
Nguyên tử khối: 36.4609
Nhiệt độ sôi: 110°C
Tên gọi: sắt (II) clorua
Nguyên tử khối: 126.7510
Nhiệt độ sôi: 1023°C
Nhiệt độ nóng chảy: 667°C
Tên gọi: hidro sulfua
Nguyên tử khối: 34.0809
Nhiệt độ sôi: -60°C
Nhiệt độ nóng chảy: -82°C
Chất xúc tác
không có
Nhiệt độ
thường
Áp suất
thường
Điều kiện khác
không có
2
H2O
Tên gọi: nước
Nguyên tử khối: 18.01528 ± 0.00044
Nhiệt độ sôi: 100°C
Nhiệt độ nóng chảy: 4°C
+
5
S
Tên gọi: sulfua
Nguyên tử khối: 32.0650
Nhiệt độ sôi: 444°C
Nhiệt độ nóng chảy: 115°C
→
4
H2S
Tên gọi: hidro sulfua
Nguyên tử khối: 34.0809
Nhiệt độ sôi: -60°C
Nhiệt độ nóng chảy: -82°C
+
SO2
Tên gọi: lưu hùynh dioxit
Nguyên tử khối: 64.0638
Tên gọi: nước
Nguyên tử khối: 18.01528 ± 0.00044
Nhiệt độ sôi: 100°C
Nhiệt độ nóng chảy: 4°C
Tên gọi: sulfua
Nguyên tử khối: 32.0650
Nhiệt độ sôi: 444°C
Nhiệt độ nóng chảy: 115°C
Tên gọi: hidro sulfua
Nguyên tử khối: 34.0809
Nhiệt độ sôi: -60°C
Nhiệt độ nóng chảy: -82°C
Tên gọi: lưu hùynh dioxit
Nguyên tử khối: 64.0638
Chất xúc tác
không có
Nhiệt độ
Nhiệt độ.
Áp suất
thường
Điều kiện khác
không có
Các phương trình điều chế I2
Br2
Tên gọi: brom
Nguyên tử khối: 159.8080
Nhiệt độ sôi: 58.8°C
Nhiệt độ nóng chảy: -7.2°C
+
2
HI
Tên gọi: axit iodic
Nguyên tử khối: 127.91241 ± 0.00010
→
I2
Tên gọi: Iot
Nguyên tử khối: 253.808940 ± 0.000060
Nhiệt độ sôi: 184°C
Nhiệt độ nóng chảy: 113°C
+
2
HBr
Tên gọi: Hidro bromua
Nguyên tử khối: 80.9119
Nhiệt độ sôi: 122°C
Nhiệt độ nóng chảy: -11°C
Tên gọi: brom
Nguyên tử khối: 159.8080
Nhiệt độ sôi: 58.8°C
Nhiệt độ nóng chảy: -7.2°C
Tên gọi: axit iodic
Nguyên tử khối: 127.91241 ± 0.00010
Tên gọi: Iot
Nguyên tử khối: 253.808940 ± 0.000060
Nhiệt độ sôi: 184°C
Nhiệt độ nóng chảy: 113°C
Tên gọi: Hidro bromua
Nguyên tử khối: 80.9119
Nhiệt độ sôi: 122°C
Nhiệt độ nóng chảy: -11°C
Chất xúc tác
không có
Nhiệt độ
thường
Áp suất
thường
Điều kiện khác
không có
Br2
Tên gọi: brom
Nguyên tử khối: 159.8080
Nhiệt độ sôi: 58.8°C
Nhiệt độ nóng chảy: -7.2°C
+
2
NaI
Tên gọi: natri iodua
Nguyên tử khối: 149.894239 ± 0.000030
Nhiệt độ sôi: 1.304°C
Nhiệt độ nóng chảy: 661°C
→
I2
Tên gọi: Iot
Nguyên tử khối: 253.808940 ± 0.000060
Nhiệt độ sôi: 184°C
Nhiệt độ nóng chảy: 113°C
+
2
NaBr
Tên gọi: Natri bromua
Nguyên tử khối: 102.8938
Nhiệt độ sôi: 1396°C
Nhiệt độ nóng chảy: 747°C
Tên gọi: brom
Nguyên tử khối: 159.8080
Nhiệt độ sôi: 58.8°C
Nhiệt độ nóng chảy: -7.2°C
Tên gọi: natri iodua
Nguyên tử khối: 149.894239 ± 0.000030
Nhiệt độ sôi: 1.304°C
Nhiệt độ nóng chảy: 661°C
Tên gọi: Iot
Nguyên tử khối: 253.808940 ± 0.000060
Nhiệt độ sôi: 184°C
Nhiệt độ nóng chảy: 113°C
Tên gọi: Natri bromua
Nguyên tử khối: 102.8938
Nhiệt độ sôi: 1396°C
Nhiệt độ nóng chảy: 747°C
Chất xúc tác
không có
Nhiệt độ
thường
Áp suất
thường
Điều kiện khác
không có
Cl2
Tên gọi: clo
Nguyên tử khối: 70.9060
Nhiệt độ sôi: -34°C
Nhiệt độ nóng chảy: -101°C
+
2
KI
Tên gọi: kali iodua
Nguyên tử khối: 166.00277 ± 0.00013
Nhiệt độ sôi: 1330°C
Nhiệt độ nóng chảy: 681°C
→
I2
Tên gọi: Iot
Nguyên tử khối: 253.808940 ± 0.000060
Nhiệt độ sôi: 184°C
Nhiệt độ nóng chảy: 113°C
+
2
KCl
Tên gọi: kali clorua
Nguyên tử khối: 74.5513
Nhiệt độ sôi: 1420°C
Nhiệt độ nóng chảy: 770°C
Tên gọi: clo
Nguyên tử khối: 70.9060
Nhiệt độ sôi: -34°C
Nhiệt độ nóng chảy: -101°C
Tên gọi: kali iodua
Nguyên tử khối: 166.00277 ± 0.00013
Nhiệt độ sôi: 1330°C
Nhiệt độ nóng chảy: 681°C
Tên gọi: Iot
Nguyên tử khối: 253.808940 ± 0.000060
Nhiệt độ sôi: 184°C
Nhiệt độ nóng chảy: 113°C
Tên gọi: kali clorua
Nguyên tử khối: 74.5513
Nhiệt độ sôi: 1420°C
Nhiệt độ nóng chảy: 770°C
Chất xúc tác
không có
Nhiệt độ
thường
Áp suất
thường
Điều kiện khác
không có
Một số định nghĩa cơ bản trong hoá học.
Mol là gì?
Trong hóa học, khái niệm mol được dùng để đo lượng chất có chứa 6,022.10²³ số hạt đơn vị nguyên tử hoặc phân tử chất đó. Số 6,02214129×10²³ - được gọi là hằng số Avogadro.
Xem thêmĐộ âm điện là gì?
Độ âm điện là đại lượng đặc trưng định lượng cho khả năng của một nguyên tử trong phân tử hút electron (liên kết) về phía mình.
Xem thêmKim loại là gì?
Kim loại (tiếng Hy Lạp là metallon) là nguyên tố có thể tạo ra các ion dương (cation) và có các liên kết kim loại, và đôi khi người ta cho rằng nó tương tự như là cation trong đám mây các điện tử.
Xem thêmNguyên tử là gì?
Nguyên tử là hạt nhỏ nhất của nguyên tố hóa học không thể chia nhỏ hơn được nữa về mặt hóa học.
Xem thêmPhi kim là gì?
Phi kim là những nguyên tố hóa học dễ nhận electron; ngoại trừ hiđrô, phi kim nằm bên phải bảng tuần hoàn.
Xem thêmNhững sự thật thú vị về hoá học có thể bạn chưa biết.
Sự thật thú vị về Hidro
Hydro là nguyên tố đầu tiên trong bảng tuần hoàn. Nó là nguyên tử đơn giản nhất có thể bao gồm một proton trong hạt nhân được quay quanh bởi một electron duy nhất. Hydro là nguyên tố nhẹ nhất trong số các nguyên tố và là nguyên tố phong phú nhất trong vũ trụ.
Xem thêmSự thật thú vị về heli
Heli là một mặt hàng công nghiệp có nhiều công dụng quan trọng hơn bong bóng tiệc tùng và khiến giọng nói của bạn trở nên vui nhộn. Việc sử dụng nó là rất cần thiết trong y học, khí đốt cho máy bay, tên lửa điều áp và các tàu vũ trụ khác, nghiên cứu đông lạnh, laser, túi khí xe cộ, và làm chất làm mát cho lò phản ứng hạt nhân và nam châm siêu dẫn trong máy quét MRI. Các đặc tính của heli khiến nó trở nên không thể thiếu và trong nhiều trường hợp không có chất nào thay thế được heli.
Xem thêmSự thật thú vị về Lithium
Lithium là kim loại kiềm rất hoạt động về mặt hóa học, là kim loại mềm nhất. Lithium là một trong ba nguyên tố được tạo ra trong BigBang! Dưới đây là 20 sự thật thú vị về nguyên tố Lithium - một kim loại tuyệt vời!
Xem thêmSự thật thú vị về Berili
Berili (Be) có số nguyên tử là 4 và 4 proton trong hạt nhân của nó, nhưng nó cực kỳ hiếm cả trên Trái đất và trong vũ trụ. Kim loại kiềm thổ này chỉ xảy ra tự nhiên với các nguyên tố khác trong các hợp chất.
Xem thêmSự thật thú vị về Boron
Boron là nguyên tố thứ năm của bảng tuần hoàn, là một nguyên tố bán kim loại màu đen. Các hợp chất của nó đã được sử dụng hàng nghìn năm, nhưng bản thân nguyên tố này vẫn chưa bị cô lập cho đến đầu thế kỉ XIX.
Xem thêm